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ABSTRACT
Performance tuning is becoming a challenging engineering
work as architectural complexity grows. Autotuning is emerg-
ing as a critical technique to achieve high portable perfor-
mance. However, the current approach to construct auto-
tuners doesn’t appeal to common users. In order to simplify
the use of autotuning, we propose an autotuning protocol to
achieve a better abstraction while developing a performance
tuning and knowledge managing suite (PAK) through en-
capsulation. The protocol specifies five procedures extrac-
tor, producer, optimizer, evaluator and learner to assemble
an autotuner rapidly. The autotuning programming inter-
faces for the protocol are implemented as a fundamental in-
frastructure to achieve modularity and reusability. The in-
frastructure provides customizable mechanism and deploys
performance knowledge database for seamlessly leveraging
performance knowledge mining. In the case studies of sten-
cil and sparse matrix computations, PAK only needs to write
tens of lines code to assemble the autotuners, and demon-
strates higher productivity compared to the traditional ap-
proaches.

1. INTRODUCTION
The emerging multi/many-core technique brings more com-

plexity and diversity of architecture and program model, as
a consequence, it increases di�culty to develop high perfor-
mance programs achieving reasonable e�ciency, not speak-
ing of extreme e�ciency for either Exascale supercomputing
or energy-constraint embedded computing. A conventional
way to tune code by hand is trick-intensive and requires pro-
grammers to be highly knowledgeable about the relationship
between software and its mapping to hardware. Although
such a hand-tuned code may achieve extremely high perfor-
mance, it is usually not performance portable across di↵er-
ent execution context for the following reasons:

• Input Variation: Many applications have varying be-
haviors (i.e., locality, parallelism) based on their in-
puts. For example, a 7 point stencil application (with-

out any optimization) exhibits di↵erent data locality
behaviors when the size of input data changes from
256*256*512 to 512*512*1024, the performance di↵er-
ence has 10% percent X86 CPUs. The variant is caused
by input, but correlated with many other factors of ar-
chitecture and application, which are complicated for
analyzing and optimizing alone.

• Compiler Variation: On currently computer system,
compiler or programming model plays pivotal role on
performance tuning. Not speaking of performance gap
caused by di↵erent compilers (i.e., Intel C compiler and
GNU GCC), a meticulous selection of one compiler’s
options may lead to several times of performance im-
provement. Considering that the huge number of mod-
ern compiler options, it is prohibitive to tune a optimal
configuration by hand.

• Hardware Variation: With respect to the evolvement
of hardware, optimal code on today’s architecture is
almost certain to be suboptimal on future’s one. In
fact, even on the di↵erent implementations of the same
ISA, i.e., Intel and AMD X86 CPUs, their respec-
tive optimal codes may be significantly changes from
each other. Obviously, it is extremely both time and
human-resource consuming to hand-tune codes on ev-
ery platform.

Recently, a critical technology for dealing with the signif-
icant changes is autotuning technique that acts as either an
auto-tuning library or adaptive performance tuning frame-
work for some specific application domain. However, it is
not an easy work to implement an autotuning system or au-
totuner for a specific demand. We are facing with enormous
challenges in devoloping and assembling an autotuner, even
if they could make use of the existing works including tools
and algorithms.

• There is a lack of a modular, reusable and general ap-
proach to construct an autotuner. To date, people have
developed a series of autotuning libraries and frame-
works, some of which (e.g., FFTW [2], ATLAS [15])
have been extensively used in accelerating various ap-
plications. However, the implementations used in one
autotuning system cannot be directly reused in an-
other one. In other words, we have to re-implement
some autotuning strategies from scratch even if they
have successfully applied in existing autotuners. To
promote its popularization, several work pay their ini-
tial e↵orts on simplifying construction of autotuner.
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OpenTuner [1] proposes a fully-customizable configu-
ration representations, an extensible technique repre-
sentation to allow for domain-specific techniques, and
an easy to use interface for communicating with the
program to be autotuned. This trend indicates that
it is feasible to develop an autotuning methodology
which is of modularity, reusability and generality.

• There is a lack of a uniform, extensible, and customiz-
able approach to preserve performance knowledge. Per-
formance optimization/tuning is an nontrivial work.
Especially for the performance critical algorithms like
stencil computation and sparse matrix operations, we
have witnessed massive published papers on tuning
their performance in every generations of processors in
the past several decades. However, its e↵ectiveness is
often determined by prior knowledge of programmers.
The knowledge here comprises performance data, op-
timization parameters, and characteristics of a spe-
cific program and machine. The most advantage of
autotuning technique is to lower requirement of the
knowledge for programmers. For example, the search-
based autotuning [5] acquires knowledge of the best
optimization strategies using empirical trials while the
machine learning based one [7] stores the knowledge
in a statistical model during the training phase. Un-
fortunately, the knowledge has di↵erent formats and
organizations for each tool and algorithm so that it
is di�cult to facilitate a comprehensive optimization
search in an autotuning system.

As a consequence, most of autotuning related components,
such as static analysis tools [8], search algorithms [1], ma-
chine learning models [7], domain specific compilers [11, 3,
13, 10], highly-tuned algorithm libraries [8] and measure
tools [9], cannot easily recognize each other, as they use
di↵erent input and output interface. This fact hampers the
extensive use of autotuning technique.

In this work, we propose a performance tuning and knowl-
edge managing suit (PAK) to overcome these problems.
This work targets to an infrastructure to construct mod-
ular autotuners. Our novelty is highlighted by an autotun-
ing protocol of five abstraction modules–extractor, producer,
optimizer, evaluator and learner to assemble an autotuner
rapidly. We define their interfaces and specification of cor-
responding input/output for customizing modules with ex-
isting tools. With the five modules in mind, users can eas-
ily build an autotuning skeleton, and then instantiate it by
either selecting some module implementation available in
the infrastructure or providing their own implementation
as a plugin. As we know, performance knowledge repre-
sents the inherent connection between a given instance (e.g.,
program, platform) and its optimization variants. Thus, a
cornerstone of our methodology is performance knowledge
database, which stores the knowledge produced during the
course of autotuning. The database supports four basic data
types, which expresses the knowledge in a uniform way. The
organization of the database is extensible, and support the
addition of new knowledge type. Moreover, it take uses of
the input and output interface for new tools to automat-
ically recognize the custom knowledge and store them to
database. The main contributions of this paper are:

• We abstract a protocol of building an autotuner, which
is composed of five basic procedures representing com-
monality of autotuning system. We further define au-
totuning programming interface (API) for construct-
ing an autotuner with the protocol. They act as an
infrastructure to support modularized autotuners.

• We propose a design of performance knowledge database,
which provides a customize, extensible, and uniform
way to automatically preserve knowledge generated in
process of autotuning. It provides interface to describe
performance data by defining customized tools.

• We demonstrate the use of PAK by building auto-
tuners for stencil computation and sparse matrix-vector
multiplication(SpMV), respectively. With PAK, users
only need to write tens of lines code to assemble the au-
totuners. Compared to the corresponding traditional
autotunes, PAK show higher productivity and compa-
rable performance as well.

To the best of our knowledge, it is the first time that auto-
tuning methodology are generalized to composable procedures
which can be modularized as an infrastructure leveraging per-
formance knowledge database. This paper is advocating an
unified protocol of developing autotuners, instead of present-
ing a comprehensive implementation of infrastructure which
relies on the e↵ort of community.

Stencil autotuner SpMV autotuner FFT autotuner

GeneratorAnalyser Autotuning Programming Interface (API)

Solutions

Tools Algorithms
ORIO,HPS,OpenTuner,
TAU,PAPI,gprof,...

Exhaustion search
Greedy search
Heuristic search

Descion tree
Clustering
Deep Learning.......... ..........

Problems

Single-node: CPU/GPU/MIC/FPGA/

Multi-nodes: CPU/CPU+X

DomainsPlatforms
Stencil,SpMV,FFT,Graph

....................
Environments

OS, memory hierarchiy, 

runtime library,compiler..........

.....

Autotuning Protocol

Figure 1: An abstracted hierarchy of autotuning systems.

2. AUTOTUNING PROTOCOL
In the current design of an autotuning system, each phase

is specific to the targeted problem. In fact, an autotuning
system can be hierarchically structured as shown in Figure 1.
By dissecting the internal structure of most autotuning sys-
tems, we observe that they can be decomposed into several
components.

Logically, the domain-specific autotuners can be formu-
lated as solutions to some problems. Here, the problem is
defined as: given an application domain, find its optimal
implementation on any computing platform and execution
environment. In order to help solve the problem, people
have developed a series of tools and algorithms. Ideally,
with these tools and algorithms available at hand people
could easily build an autotuner. In fact, for a real-world
implementation they only work case by case and still need
heavy e↵ort of reengineering. Therefore, we argue that it’s
necessary to design a protocol of constructing autotuners.
With the protocol, an unified interface could be defined to
programming any autotuner.
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The idea of hierarchy inspires us to develop an infrastruc-
ture to modularly construct an autotuner and comprehen-
sively preserve the autotuning knowledge. By integrating
existing and emerging tools and algorithms, and employing
a customizable, extensible and uniform knowledge database,
it could greatly simplify the reusing of existing works and
decrease the e↵orts of building an autotuner. Given a spe-
cific problem, traditional methodology requires a series of
tedious procedures, which include analyzing problem, se-
lecting/creating tools, implementing algorithm, defining in-
terface and so on. By contrast, with PAK methodology,
developers only need pay attention to analyzing problem,
selecting/customizing modules and assembling autotuners.

The fundamental idea of PAK is an autotuning proto-
col composed of five customizable modules which are ab-
stracted from the most of autotuning systems. In the pro-
tocol, we provide a set of abstract interfaces for the five ele-
mental components, which should be customized by users to
construct an autotuner. These interfaces state the implicit
workflow of an autotuner with PAK as shown in Figure 2.
The core modules, extractor, producer, optimizer, evaluator
and learner, cooperatively work as follows.

• Extractor contains one or more analyzers which are in-
tegrated in a loosely-coupled way. It applies them to
characterize a given running instance from di↵ernent
levels of algorithm, architecture and input, and out-
puts its features as result.

• Producer is responsible to generate an optimization so-
lution candidate in each tuning step. It has an input
interface that receives the features, the tuning step
and the tuning score, and has the ability to realize any
autotuning search algorithms, including both search-
based approach and machine learning-based one.

• Optimizer gets a parameter, and employs a set of gen-
erators to perform the corresponding optimization strat-
egy.

• Evaluator takes the optimized running instance as in-
put. It comprises of one or more dynamic analyzers
to measure the optimization result. Each of the fea-
tures in these dynamic analyzers is related to a specific
score function, which appraises the optimization result
according to the preset object. If the appraisement
satisfies the object, the autotuning stops and outputs
the optimization result. Otherwise, the appraisement
result is sent to the Producer and a new tuning step
begins.

• Learner obtains the tuning data from the performance
knowledge database, and builds machine learning mod-
els which facilitate the parameter generation of the ma-
chine learning-based Producers. The knowledge data,
including those generated during the course of tuning,
are persevered in a database using a uniform format.

A remarkable advantage of PAK is the extensibility that
promises an easy employment of the third-party tools. These
tools provide measurement, analysis and optimization capa-
bilities for a running instance during a tuning step, and pro-
duce valuable data. We refer to them as knowledge data be-
cause they contain characterization of the running instance,
parameters of optimization and measurement of optimized

Tuning

Producer

step
evaluate result

pa
ra

m
et

er
 

sp
ac

e

search
algorithm

ML
model

Optimizer

variant generator

Evaluator

metric
analyser

score
functionparameters optimizted

 instance
instrumented

instance metric

Instance

environment set run

best variant

Yes

No

Extractor

feature
analyser

environment analyser

input
analyser

features

supervised 
learning

Learner

unsupervised 
learning

Knowleage mining knowledge
features

metric

Figure 2: The workflow of an autotuner with PAK.

running instance. The knowledge data encodes a tuning step
from the aspects of characterization of running instance, op-
timization strategy, and measurement result. However, most
tools use fixed knowledge data based on their own formats,
which are not recognized by each other.

PAK provides an interface for defining custom tools in-
cluding a FDF describing knowledge data and a launch script
standardizing the input and output files. The knowledge
data are understood automatically by PAK and converted to
the format that is compatible with the knowledge database.
The knowledge database is implemented in a scalable or-
ganization form and employs an uniform format that con-
sists of four data type to express the knowledge data. With
these features, PAK implements a customizable, extensible
and uniform knowledge database to preserve and access the
knowledge data.

3. CASE STUDIES
In this section, we apply PAK to two performance criti-

cal problems– stencil computation and sparse matrix-vector
multiplication (SpMV), which are extensively used in high
performance computing applications. In order to demon-
strate the high productivity of PAK, we re-implement the
two autotuners by adopting the already developed tools and
algorithms from their corresponding autotuning systems [7,
8]. Figure 3 and 4 show the architectures and implementa-
tions of the autotuners with PAK. We conduct experiments
on a 16-core SMP system integrating two Intel Xeon E5-2670
multicore CPUs. The compiler is Intel compiler version 13.1.
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#customizean Extractor object’ext’and an Optimizerobject’opt’
ext=PAK.Extractor$new(list (hps frontend=c(”FD”,”RD”,”AN”,”LR”,”AC”
,”DT”,”PS”,”IT”),platforminfo=c(”core”,”freq”,”cache”,”bd”)))

opt=PAK.Optimizer$new(generator.name=”hpsgen”)

#customizean Producer object’pro’and an Evaluator object’eva’
pro=PAK.Producer.Greedy$new(parameter.list )
eva=PAK.Evaluator$new(sub .evaluators=list (tau=
list (P WALL CLOCK TIME=function (x){ if(x>0) return (-x) else return (0)} )))

#assemble themtogetherand performautotuning
for(app in training.stencils)
{
tuning=PAK.Tuner$new(app=app,optimizer=opt,evaluator=eva,producer =pro)
tuning$tune()
}

Figure 3: The architecture of stencil autotuner with PAK
and its implementation.

The benchmark set consists of five stencil computation ap-
plications, which include FDTD [6], HEAT [3], WAVE [12],
POISSON [14] and HIMENO [4]. Figure 5 plots the perfor-
mance in Gflops (Giga floating-points per second) on CPU.
The five baseline programs achieve 1.52 Gflops, 3.0Gflops,
1.59Gflops, 2.11Gflops and 1.84Gflops, respectively. As a
comparison, our autotuner system achieves 10Gflops, 11.4Gflops,
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#customize an Extractor object ’ext’and an Optimizer object ’opt ’
ext=PAK.Extractor $new (list (spmv extrator= c (”M”,”N”,”NNZ”,”Ndiags”,

”NTdiags_ratio”,”ER_DIA”)))
opt=PAK.Optimizer $new (generator.name=”smatlib”)
#customize a Producer object ’pro1’using exhaustion and an Evaluator object ’eva ’
pro1=PAK.Producer.Exhaustion $new (list (method name=”’MV_COO’,’MV_CSR’

eva=PAK.Evaluator $new (sub .evaluators= list (tau=

#perform autotuning for training
for (app in training.matrixs)
{
tuning=PAK.Tuner $new (app=app,optimizer=opt,evaluator=eva,producer =pro1,

tuning $tune()
}
#learn the model
pro2=PAK.Producer.DecisionTree $new ()
pro2 $trainModel(trainingData,””,”method name”)
#autotuning using generated decision − tree model
for (app in test.matrixs)
{
t=objectives[[app]]
eva2=PAK.Evaluator $new (sub .evaluators= list (tau= list (P WALL CLOCK TIME=

function (x) { if (x> t)return (t− x) else return (0) } )))
tuning=PAK.Tuner $new (app=app,extractor=ext,optimizer=opt,evaluator=eva,

tuning$tune()
}

list (P WALL CLOCK TIME= function (x) { if (x> 0) return (0− x) else return (0) } )))

need.store=TRUE)

,’MV_CSC’,’MV_DIA’;”))

producer =pro2)

Figure 4: The architecture of SpMV autotuner with PAK
and its implementation.

3.7Gflops, 8Gflops and 7.5Gflops. The speedups are 6.6x
for FDTD, 3.8 for HEAT, 2.3x for HIMENO, 3.8x for Pois-
son and 4.2x for WAVE. With multicore parallelism the
speedups increase to 5.4x for FDTD, 6.2x for HEAT, 11.2x
for HIMENO, 7.7x for Poisson and 5.4x for WAVE.
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Figure 5: Comparison of performance in Gflops between the
baseline and the autotuned implementation. The problem
size is 256⇥ 256⇥ 512.

atmosmodl barrier2−1 Rucci1 ohne2 atmosmodd para−6

COO

CSR

CSC

DIA

Ti
m

e 
(s

)
0

10
2
0

3
0

4
0

5
0

Figure 6: The performance in seconds of running time are
predicted by the SpMV autotuner.

We list the performance of the six matrixes in test set
in Figure 6. The x-axis presents the six matrixes, which
are atmosmodl, barrier2-1, Rucci1, ohne2, atmosmodd and
para-6, and the y-axis is their execution time. For the ma-
trixes of atmosmodl and barrier2-1, as the implementation
of DIA costs the least time, it is the best implementation.
For the rest of six matrixes, the CSC implementation has
the fastest speed.
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